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Abstract

This study considers a small Rayleigh number thermal convection in a fluid-saturated porous medium between two
infinite-horizontal walls. The lower and upper walls have sinusoidal temperature distributions with a wave number and
a phase difference, and the effect of the parameters on the flow and heat transfer characteristics is investigated. For a
given wave number, an out-of-phase configuration yields minimum heat transfer at the walls. Maximum heat transfer

occurs at the wave number of 2.286 with an in-phase configuration.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Though the thermal convection in porous media has
been studied extensively [1-3], relatively few studied the
convection with boundary surfaces having non-uniform
temperatures [4-8]. In particular, the study on the sys-
tem with spatially periodic boundary temperatures is
very rare [6-8]. Poulikakos and Bejan [6] and Bradean
et al. [7] investigated the convection in a semi-infinite
porous medium bounded by a horizontal wall with pe-
riodic heating and cooling. Recently, Yoo [8] investi-
gated the convection in a vertical slot with periodic
boundary temperatures.

In this note, we consider a steady thermal convection
in a fluid saturated porous layer between two infinite-
horizontal walls kept at spatially periodic temperatures
(Fig. 1). The configuration of the present study is mo-
tivated by a system with regularly spaced multiple heat
sources such as electronic components and energy stor-
age systems with periodic-spaced piping. The wave
number (k) and the phase difference (ff) represent the
frequency and the stagger of arrangement of the heat
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sources, respectively. The present configuration is dif-
ferent from the standard Rayleigh-Bénard problem in
that we consider the case when there is no mean tem-
perature difference between the lower and the upper
walls and no static state without fluid flow. The non-
uniform wall temperature generates convective flow that
is dependent on the wave number (k) and phase differ-
ence (f5). We investigate the effect of the configuration (%,
p) of the spatial non-uniformities on the flow and heat
transfer characteristics.

2. An analytical solution for small Ra

We consider a steady state, two-dimensional, thermal
convection in a fluid-saturated isotropic porous me-
dium. The dimensionless Darcy—Boussinesq equations
[6] and the boundary conditions are given by
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Fig. 1. Problem configuration: a fluid-saturated porous me-
dium is contained between two-infinite horizontal impermeable
walls with sinusoidal temperature variations.

0=sin(kx—f) aty=1 (5)

where the dimensionless streamfunction (¥) and tem-
perature (0) are defined as (u,v) = (0¥/dy, —0¥/0x)
and 0 = (T — Ty) /AT, respectively. The Darcy-modified
Rayleigh number (Ra) is defined as Ra = KgaHAT /kv,
where K is the permeability of the porous matrix, « and v
are the thermal expansion coefficient and the kinematic
viscosity of the fluid, respectively, k is the effective
thermal diffusivity of the saturated porous medium, A is
the thickness of porous layer, and g is the gravitational
acceleration.

The governing equations (1)—(5) possess the follow-
ing point symmetries:

'P(ﬁ/k_x7 1 _y) = l]/(x7y)7
O(B/k —x,1 =y) =—=0(x,y) (6)

We define the mean Nusselt number (MNu) with the av-
eraged heat transfer on the walls over one wavelength

2n/k (k #0):

— ko[>0
Nu—fﬁ/ & dx aty=0,1 (7)

Egs. (1)—(5) are solved by expanding ¥(x,y) and 0(x, )
in powers of Ra [8]:

Y(x,y) = Yo(x,y) + Ra¥V(x,y) +

0(x7y) = Oo(x,y)+Ra0|(x,y)+... (8)

The solutions to leading order are

Po(x,y) =0,

Oo(x,y) = f(1 — y)sin(kx) + f(») sin(kx — B) )

¥ (x,y) = g(1 — y) cos(kx) + g(v) cos(kx — ) (10)
__sinh(ky)

£0) = —;s‘i’z'gi’(‘i) sin(fy) — 5 R coshlhy) (1)

The zeroth-order solution (P, 6y) represents the pure
conduction state without net heat transfer at the walls.

The fluid flow in the porous layer can give rise to non-
zero averaged heat transfer, and the mean Nusselt
number (Nu) of the first-order temperature distribution
is obtained as

Nu = RaNu(k, B) = Ra|F; (k) + F(k) cos(B)] (12)

—2k? cosh(k) + ksinh(k) + cosh(k) sinh? (k)

Filk) = 8k sinh’ (k)
(13)
Rk = k*[1 4 cosh®(k)] — k sinh(k) cosh (k) — sinh® (k)
2 8k sinh’ (k)
(14)

3. Results and discussion

First, the characteristics of flows for f# are shown in
Fig. 2 with &k =3.1. Fig. 2 presents streamlines and
isotherms for several values of ;. When f = 0, upright
rectangular-shaped cells appear where the fluid in the
plane of x = n/2k and x = 3n/2k moves upward and
downward directions, respectively (Fig. 2(a)). As f in-
creases, the cells are tilted gradually (Fig. 2(b)), and two
like-rotating eddies appear in a cell when the tilt from
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Fig. 2. Streamlines and isotherms of & = 3.1 for several phase
differences (f): (a) f=0; (b) p=0.5m (c) p=0.8n (d)
B =0.95m; (e) f =mn. The range of x is 0 <x < 2n/k.
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the vertical direction becomes large (Fig. 2(c) and (d)).
At f ==, however, upright rectangular-shaped cells
appear again by forming two tier-structure cells with
two counter-rotating eddies in the vertical direction (Fig.
2(e)). The characteristics of the flow at f* (n < " <2n)
is identical to that of f =2n — * (0< f < n). Fig. 2(a)-
(e) shows a smooth transition of flows from a two-eddy
to four-eddy pattern, as f§ increases from 0 to m. On the
other hand, a transition from four-eddy to two-eddy
pattern was observed in the vertical slot [8], as f§ is varied
from 0 to =.

The variation of flows with respect to f at small & (<3)
is similar to that shown in Fig. 2. At sufficiently large %,
however, the thermal interaction between two walls be-
comes weak, and isolated eddies are formed near each
wall, for all . The flows for k = 6 and 12 are presented in
Fig. 3 with =0 and =n/2. Fig. 3(a.2) and (b.2) with
k = 12 show the isolated eddies near the lower and upper
walls. When £ is large, the fluid in the central part is al-
most stagnant, and the eddies near each wall are nearly
unaffected by each other. The transition of flows with
respect to k occurs smoothly: Figs. 2(a) and (b) and Fig. 3
for =0 and ©/2 show a smooth transition from the
flow with one eddies to the flow with two eddy in a cell.

The characteristics of the mean Nusselt number (Nu)
for the wave number (k) and the phase difference (f5) are
investigated with Figs. 4 and 5. Fig. 4 presents the
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Fig. 3. Streamlines for various k£ and f: (a.1) k =6 and f§ = 0;
(a2) k=12 and f=0; (b.1) k=6 and ff =n/2; (b.2) k=12
and ff = n/2. The range of x is 0 <x < 2n/k.

functions Fj(k) and F(k) in Eq. (12):
Nu = Ra[F, (k) + F> (k) cos(B)]. Fi (k) and F»(k) have their
maximum values at ki, =~ 2.505 and k,, ~ 2.097, re-
spectively; as k increases, Fj(k)[F>(k)] increases mono-
tonically at 0 < k < ky,, ~ [kan), but decreases at k >
kim ~ [kom]. In particular, F>(k) approaches zero as k
becomes large. The values of F(k)/Max[F(k)] at
k=10, 12, 15, 18, and 20 are approximately 4x 1073,
6x107%, 4x1075, 2x107%, and 4x1077, respectively.
That is, the averaged heat transfer at the wall becomes
independent of the phase difference (ff) as the wave
number (k) increases (k — oc), because Nu(k,f) =
F (k) + F>(k)cos(B) in Eq. (12). And for a given wave
number, the maximum and minimum heat transfers
occur for in-phase (f=0) and out-of-phase (ff =)
configurations, respectively, since F>(k) > 0.

The function Nu(k, ) for a fixed f§ is similarly shaped
to that for Fi (k) in Fig. 4. And the wave number k = &,
where Nu(k, ) has its maximum value is dependent on
p. Fig. 5 presents k,, and the corresponding Nu(k,,, f§) as
functions of f. The values of k, at =0, 0.25x, 0.5,
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Fig. 4. The functions Fj (k) and F>(k) showing the dependency
of mean Nusselt number on wave number (k): Nu(k,p) =
(k) + Fa(k) cos(B).
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Fig. 5. (a) Wave number (k,) at which Nu(k, ) has its maxi-
mum value as a function of f; (b) Nu(k, ) at k = k,,.
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0.75n, and = are k, ~ 2.286, 2.321, 2.505, 3.831, and
5.011, respectively. We can see that maximum heat
transfer occurs at f = 0 and k =~ 2.286 (Fig. 5). On the
other hand, in the vertical slot with spatially periodic
wall temperatures [8], the wave number yielding maxi-
mum heat transfer is independent of f, since Nu(k, f5) is
expressed as Nu(k, f) = G(k) sin(f); and maximum heat
transfer occurs at k ~ 1.606 and f = nt/2.

In closing, the heat transfer in a horizontal porous
layer as a function of phase difference () has its maxi-
mum and minimum values for in-phase (f = 0) and out-
of-phase (f = m) configurations, respectively; and it
becomes independent of the phase difference as the wave
number increases (kK — o0). The wave number yielding
maximum heat transfer is dependent on the phase dif-
ference, and maximum heat transfer occurs at the wave
number of k£ =~ 2.286 with in-phase (§ = 0) configuration.
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